*Ansa***-di(phosphaneiminato)titanium chelates: novel isolobal analogues of** *ansa***-titanocene derivatives**

Ulrich Siemeling,*^{*a*} Lars Kölling,^{*a*} Anja Stammler^{*b*} and Hans-Georg Stammler^{*b*}

^a Department of Physics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany. E-mail: siemeling@uni-kassel.de

^b Department of Chemistry, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany

Received 12th April 2002, Accepted 2nd July 2002 First published as an Advance Article on the web 30th July 2002

 $(Me_3SiN)Bu_2^tP(CH_2)_3PBu_2(NSiMe_3)$ (1) was obtained by the Staudinger reaction from Me_3SiN_3 and $\text{Bu}^t_2P(CH_2)_3P\text{Bu}^t_2$. Metathesis of 1 with TiCl₄ in boiling toluene afforded the chelate $[(NBu^t_2P(CH_2)_3PBu^t_2N)TiCl_2]$ (2). $[(NBu^t₂P(CH₂)₃PBu^t₂N)TiMe₂](3)$ and $[(NBu^t₂P(CH₂)₃PBu^t₂N)Ti(CH₂Ph)₂](4)$ were obtained from 2 by reaction with methyllithium and benzylmagnesium chloride, respectively. The crystal structures of **3** and **4** were determined. Both compounds exhibit two quite different bond angles at their respective nitrogen atoms (*ca.* 140° *vs. ca.* 160°).

Introduction

The polymerisation of α -olefins by titanocene- and zirconocenebased catalysts is of great technological relevance.**¹** Nevertheless, there is increasing interest in the development of novel nonmetallocene catalysts for olefin polymerisation, since these may allow, *inter alia*, an even greater control over polymer properties. Several new catalyst families have been described in this context.**²**

 $Di(phosphaneiminato)$ titanium (iv) complexes of the type $[(Bu^t₃PN)₂TiX₂]$ (X = Cl, Me) represent the first non-cyclopentadienyl, single-site catalysts competitive with derivatives of metallocenes under commercially relevant polymerisation conditions.**³** Similar to di(organoimido) complexes of the Group 6 metals, they are isolobal analogues of bent metallocene derivatives of the Group 4 metals.**⁴**

Ansa-metallocene derivatives are essential for the stereospecific polymerisation of α-olefins, and hence their isolobal analogues are of great current interest in this context. We recently reported the first examples of *ansa*-di(organoimido) chromium complexes⁵ and here describe the first *ansa*di(phosphaneiminato)titanium compounds.

Results and discussion

The number of *ansa*-di(phosphaneiminato) complexes known to date is very small,⁶ and no such compound has been described in the chemistry of the Group 4 metals. A convenient method for the synthesis of phosphaneiminato complexes is the metathesis of silylated iminophosphoranes with metal halides.**⁷** For example, the reaction of two equivalents of $Ph_3P(NSiMe_3)^8$ and Bu^t ₃ $\text{P(NSiMe}_3)$,³ respectively, with TiCl₄ affords $[(\text{Ph}_3\text{PN})_2$ -TiCl**2**] and [(Bu**^t ³**PN)**2**TiCl**2**] in 85 and 91% yield, respectively. In contrast, the reaction of (Me₃SiN)Ph₂PCH₂CH₂PPh₂(NSiMe₃) with TiCl**4** does not lead to a di(phosphaneiminato) chelate. Instead, reaction of a CH**2** group with the strongly Lewis acidic metal halide takes place, and a bis(trimethylsilylphosphoranimino) chelate containing one carbon–titanium bond is obtained.**⁹** A similar reaction takes place between [VCl**3**(THF)**3**] and (Me**3**SiN)Ph**2**PCH**2**PPh**2**(NSiMe**3**).**¹⁰** Dinuclear complexes containing a bridging di(phosphaneiminato) ligand are formed in the reaction of (Me**3**SiN)Ph**2**P(CH**2**)*n*PPh**2**(NSiMe**3**) with the comparatively weak Lewis acids Cp^*TiF_3 ($n = 2$)¹¹ and $Cp^*TiCl_3 (n = 1, 12213).$

 $(Me₃SiN)Bu^t₂P(CH₂)₃PBu^t₂(NSiMe₃)$ (1), obtained by the Staudinger reaction from $Me₃SiN₃$ and $Bu^t₂P(CH₂)₃PBu^t₂,¹⁴$ reacts with TiCl**4** in boiling toluene under dilution conditions, affording the di(phosphaneiminato) chelate [(NBu**^t ²**P(CH**2**)**3**- PBu**^t ²**N)TiCl**2**] (**2**) (Scheme 1). The hydrocarbyl derivatives

FULL PAPER

FULL PAPER

DALTON

Scheme 1 Reagents and conditions: (i) $Me₃SiN₃$, toluene, *ca.* 80 °C; (ii) TiCl**4**, toluene, reflux; (iii) **3**: methyllithium (>2 equiv.), diethyl ether; **4**: benzylmagnesium chloride (> 2 equiv.), diethyl ether.

 $[(NBu^t{}_2P(CH_2)_3PBu^t{}_2N)TiMe_2]$ (3) and $[(NBu^t{}_2P(CH_2)_3PBu^t{}_2-N]$ N)Ti(CH**2**Ph)**2**] (**4**) were obtained from **2** by reaction with methyllithium and benzylmagnesium chloride, respectively (Scheme 1). Both compounds are very air-sensitive.

A single-crystal X-ray structure analysis was performed for **3** (Fig. 1) and **4** (Fig. 2). Selected bond lengths and angles are collected in Table 1. The crystal which was selected for the structure determination of **4** showed some benzyl/chlorine disorder with Cl occupying 7.5% of the benzyl positions, although an excess of benzylmagnesium chloride had been used in the synthesis of **4**. The disorder could be modelled satisfactorily (see Experimental).

The Ti–N [**3**, 183.5(2) and 181.0(2) pm; **4**, 180.7(2) and 182.3(2) pm] and P–N distances [**3**, 158.9(3) and 156.9(2); **4**, 158.7(3) and 158.4(3) pm] are very similar to the respective values found for $[(Bu^t{}_{3}PN)_{2}TiMe_{2}]^{3}$ and compatible with bond

DOI: 10.1039/b203606c *J. Chem. Soc*., *Dalton Trans*., 2002, 3277–3279 **3277**

Table 1 Selected bond lengths (pm) and angles (\degree) for **3** and **4**

3		4	
$Ti(1) - C(4)$	212.4(3)	$Ti(1) - C(4)$	215.7(5)
$Ti(1) - C(5)$	212.8(3)	$Ti(1) - C(11)$	216.5(4)
$P(1) - C(1)$	181.3(3)	$P(1) - C(1)$	180.5(3)
$P(1) - C(6)$	186.9(3)	$P(1) - C(18)$	187.0(3)
$P(1) - C(10)$	186.6(3)	$P(1)$ –C(22)	187.4(3)
$P(2) - C(3)$	184.7(3)	$P(2) - C(3)$	184.0(3)
$P(2) - C(14)$	186.7(3)	$P(2) - C(26)$	186.0(3)
$P(2) - C(18)$	185.9(3)	$P(2) - C(30)$	186.3(3)
$C(1) - C(2)$	155.3(5)	$C(1) - C(2)$	153.2(4)
$C(2) - C(3)$	152.3(4)	$C(2) - C(3)$	154.7(4)
$C(4) - Ti(1) - C(5)$	107.00(15)	$C(4) - Ti(1) - C(11)$	105.47(19)
$P(1)$ –C(1)–C(2)	115.8(2)	$P(1) - C(1) - C(2)$	116.6(2)
$C(1) - C(2) - C(3)$	110.5(3)	$C(1)$ – $C(2)$ – $C(3)$	111.8(3)
$C(2) - C(3) - P(2)$	114.1(2)	$C(2) - C(3) - P(2)$	113.7(2)

Fig. 1 Molecular structure of **3** in the crystal.

Fig. 2 Molecular structure of **4** in the crystal.

orders close to two. The N–Ti–N bite angle is $114.81(12)^\circ$ for **3** and $114.17(12)°$ for 4, which is only slightly smaller than the value of $117.24(11)^\circ$ found for $[(Bu^t{}_{3}PN)_{2}TiMe_2]$.³ This finding suggests that the eight-membered titanacycle present in **2**–**4** is essentially unstrained. Two quite different Ti–N–P angles are found for both **3** [140.30(19)[°] *vs.* 159.82(19)[°]] and **4** [140.95(17)[°] *vs.* 162.35(17)°], while angles of 171.2(2) and 175.3(2)° have been reported for [(Bu**^t ³**PN)**2**TiMe**2**].**¹⁵** This lends further credence to the quantum-chemical result that the potential energy well for the angle at the nitrogen atom is very shallow for such compounds.**⁴***^b* A similar structural feature has previously

been observed for $[(FcPh_2N),NbCl_3]$ (Fc = ferrocenyl), exhibiting Nb–N–P angles of 145.3(5) and $168.6(5)$ ^{o 16}

Conclusion

We have prepared the first Group 4 metal di(phosphaneiminato) chelates, showing that, contrary to previous beliefs,**¹³** chelating bis(trimethylsilyl)iminophosphoranes need not undergo C–H activation in preference to dehalosilylation with titanium tetrachloride. The markedly different Ti–N–P angles $(ca. 140°$ *vs. ca.* 160°) found in the structurally characterised alkyl derivatives **3** and **4** should not be interpreted in terms of linear *vs.* bent phosphaneiminato ligands, but instead reflect the "softness" of the angle at the nitrogen atom. Studies concerning the use of compounds **2**–**4** in olefin polymerisation are currently underway.

Experimental

General

All manipulations were performed in an inert atmosphere (purified argon or dinitrogen) by using standard Schlenk and cannula techniques or a conventional glovebox. Solvents and reagents were appropriately dried and purified by using standard procedures. NMR spectra were recorded at 300 K with a Bruker DRX 500 spectrometer operating at 500.13 MHz for **¹** H. Mass spectra were obtained with a VG Autospec instrument. Elemental analyses were performed by the Microanalytical Laboratory of the Universität Bielefeld and by the Microanalytical Laboratory Beller (Göttingen).

Syntheses

 $(Me_3SiN)Bu_2'P(CH_2)_3PBu_2' (NSiMe_3)$ (1). 5 mL of a solution of Me**3**SiN**3** (19.00 g, 164.9 mmol) in toluene (50 mL) were added to a stirred solution of 1,3-bis(di-*tert*-butylphosphanyl) propane¹⁴ (25.99 g, 75.2 mmol) in toluene (100 mL). The mixture was slowly heated until gas evolution was observed (*ca.* 80 °C). After dropwise addition of the remaining solution of Me**3**SiN**3** at this temperature the mixture was heated to reflux for 2 h and was then allowed to cool to room temperature. Volatile components were removed *in vacuo*. The remaining solid was treated with diethyl ether (80 mL). The mixture was filtered and the filtrate reduced to dryness *in vacuo*, affording 37.00 g (97%) of light yellow **1**. ¹H NMR (CDCl₃): δ -0.04 (s, 18H, SiMe**3**), 1.15 (d, |*J***HP**| = 13.2 Hz, 36H, Bu**^t**), 1.58–1.64 (m, 4H, CH**2**), 1.84–1.94 (m, 2H, CH**2**). **¹³**C-{**¹** H} NMR $(CDCl_3)$: δ 4.4 (SiMe₃), 19.0 (t, $|J_{CP}| = 3.8$ Hz, $CH_2CH_2CH_2$), 25.7 (dd, $|J_{CP}| = 57.9$ and 10.4 Hz, $CH_2CH_2CH_2$), 27.3 (CMe₃), 36.4 (d, $|J_{\text{CP}}|$ = 62.2 Hz, *C*Me₃). ³¹P-{¹H} NMR (CDCl₃): δ 26.5. ESI-MS: m/z (%) 507 (100) [M]⁺. Calc. for C₂₅H₆₀N₂P₂Si₂: C, 59.24; H, 11.93; N, 5.53%. Found: C, 59.81; H, 12.12; N, 5.65%.

 $[(NBu^t_2P(CH_2)_3PBu^t_2N)TiCl_2]$ (2). A solution of 1 (4.03 g, 7.95 mmol) in toluene (100 mL) and a solution of TiCl**4** (1.51 g, 7.96 mmol) in toluene (100 mL) were simultaneously added dropwise over a period of 3 h to gently refluxing toluene (100 mL). The mixture was refluxed for a further 0.5 h and then allowed to cool to room temperature. The white precipitate was collected by filtration and dried *in vacuo*. A second crop was obtained from the mother liquor at -30 °C. Yield 2.54 g (67%) . ¹H NMR (CD_2Cl_2) : δ 1.44 (d, $|J_{HP}| = 15.2$ Hz, 36H, Bu**^t**), 2.14–2.23 (m, 2H, CH**2**C*H***2**CH**2**), 2.75–2.84 (m, 4H, C*H*₂CH₂CH₂). CI-MS: m/z (%) 478 (100) [M]⁺. Calc. for C**19**H**42**N**2**Cl**2**P**2**Ti: C, 47.61; H, 8.83; N, 5.84%. Found: C, 47.33; H, 8.57; N, 6.17%.

[(NBut 2P(CH2)3PBut 2N)TiMe2] (3). Methyllithium (1.68 mL of a 1.60 M solution in diethyl ether, 2.69 mmol) was added

dropwise to a stirred suspension of **2** (0.43 g, 0.90 mmol) in diethyl ether (30 mL) at -80 °C. The mixture was allowed to warm to room temperature over the course of 12 h. Volatile components were removed *in vacuo*. The residue was extracted with toluene (2 × 10 mL) and the extracts reduced to dryness *in vacuo*. The remaining solid was washed with *n*-hexane (20 mL) and dried *in vacuo*, leaving **3** as a light yellow, microcrystalline solid. Yield 0.32 g (81%). Owing to the high sensitivity of the product towards air and moisture, no reproducible microanalytical data could be obtained. ¹H NMR (C_6D_6): δ 0.92, (s, 6H, TiMe**2**), 1.06 (d, |*J***HP**| = 13.3 Hz, 36H, Bu**^t**), 1.14–1.50 $(m, 6H, CH_2)$. ¹³C-{¹H} NMR (C_6D_6) : δ 17.7 (t, $|J_{CP}| = 4.2$ Hz, $CH_2CH_2CH_2$, 26.1 (dd, $|J_{CP}| = 47.4$ and 6.7 Hz, $CH_2CH_2CH_2$), 27.9 (CMe₃), 35.1 (TiMe₂), 37.0 (d, $|J_{CP}| = 57.2$ Hz, *CMe₃*). ${}^{31}P-\{ {}^{1}H\}$ NMR (C₆D₆): δ 25.8.

[(NBut 2P(CH2)3PBut 2N)Ti(CH2Ph)2] (4). Benzylmagnesium chloride (9.39 mL of a 1.00 M solution in diethyl ether, 9.39 mmol) was added dropwise to a stirred suspension of **2** (1.50 g, 3.13 mmol) in diethyl ether (50 mL) at -80 °C. The mixture was allowed to warm to room temperature over the course of 12 h. Volatile components were removed *in vacuo*. The residue was extracted with toluene $(2 \times 10 \text{ mL})$ and the extracts reduced to dryness *in vacuo*. The remaining solid was washed with *n*-hexane (20 mL) and dried *in vacuo*, leaving **4** as a light yellow, microcrystalline solid. Yield 0.92 g (50%). Owing to the high sensitivity of the product towards air and moisture, no reproducible microanalytical data could be obtained. **¹** H NMR (C_6D_6) : δ 0.99 (d, $|J_{HP}|$ = 13.4 Hz, 36H, Bu^t), 1.25–1.43 (m, 6H, CH**2**CH**2**CH**2**), 2.88 (s, 4H, C*H***2**Ph), 6.90 (m, 2H, Ph), 7.27 (m, 4H, Ph), 7.38 (m, 4H, Ph). **¹³**C-{**¹** H} NMR (C**6**D**6**): δ 17.0 $(t, |J_{CP}| = 4.5 \text{ Hz}, \text{ CH}_2\text{CH}_2\text{CH}_2)$, 25.8 (dd, $|J_{CP}| = 47.2 \text{ and } 5.9$ Hz, $CH_2CH_2CH_2$); 27.5 (CMe₃); 36.5 (d, $|J_{CP}| = 56.8$ Hz, *C*Me**3**); 65.6 (*C*H**2**Ph); 120.3, 127.6, 128.6, 151.8 (Ph). **³¹**P-{**¹** H} NMR (C**6**D**6**): δ 28.2.

X-Ray crystal structure determinations

Single crystals of **3** (dimensions $0.25 \times 0.17 \times 0.10$ mm³) and **4** (dimensions $0.11 \times 0.07 \times 0.07$ mm³) were used for data collection at 100 K on a Nonius Kappa CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$) Å). The structures were solved by direct methods. The program package used was SHELX 97.**¹⁷** Full-matrix least-squares refinement on $F²$ was carried out anisotropically for the nonhydrogen atoms and the disordered chlorine atoms present in **4**, where they occupy 7.5% of the benzyl positions. The disorder has been modelled according to $C(4)-C(10)$: $Cl(1)$ 92: 8, $C(11)$ – $C(17)$: $C1(2)$ 93 : 7. Hydrogen atoms were included at calculated positions using a riding model. Further X-ray structure analysis data are given in Table 2.

CCDC reference numbers 183851 and 183852.

See http://www.rsc.org/suppdata/dt/b2/b203606c/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We are indebted to the Deutsche Forschungsgemeinschaft for generous financial support.

References and notes

- 1 For leading reviews, see: (*a*) *Organometallic Catalysts and Olefin Polymerization*, eds. R. Blom, A. Follestad, E. Rytter, M. Tilset and M. Ystenes, Springer, Berlin, 2001; (*b*) W. Kaminsky, *J. Chem. Soc., Dalton Trans.*, 1998, 1413; (*c*) C. Janiak, in *Metallocenes, Vol. 2*, eds. A. Togni and R. Halterman, Wiley-VCH, Weinheim, 1998, pp. 547–623; (*d*) M. Bochmann, *J. Chem. Soc., Dalton Trans.*, 1996, 255; (*e*) H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. Waymouth, *Angew. Chem.*, 1995, **107**, 1255; H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. Waymouth, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1143; (*f*) *Ziegler Catalysts*, eds. G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer, Berlin, 1995.
- 2 For a recent review, see: G. J. P. Britovsek, V. C. Gibson and D. F. Wass, *Angew. Chem.*, 1999, **111**, 448; G. J. P. Britovsek, V. C. Gibson and D. F. Wass, *Angew. Chem., Int. Ed.*, 1999, **38**, 428.
- 3 D. W. Stephan, F. Guérin, R. E. v. H. Spence, L. Koch, X. Gao, S. J. Brown, J. W. Swabey, Q. Wang, W. Xu, P. Zoricak and D. G. Harrison, *Organometallics*, 1999, **18**, 2046.
- 4 See, for example: (*a*) U. Siemeling, T. Türk, W. W. Schoeller, C. Redshaw and V. C. Gibson, *Inorg. Chem.*, 1998, **37**, 4738; (*b*) A. Diefenbach and F. M. Bickelhaupt, *Z. Anorg. Allg. Chem.*, 1999, **625**, 892.
- 5 U. Siemeling, L. Kölling, A. Stammler, H.-G. Stammler, E. Kaminski and G. Fink, *Chem. Commun.*, 2000, 1177.
- 6 (*a*) U. Siemeling, B. Neumann, H.-G. Stammler and O. Kuhnert, *Z. Anorg. Allg. Chem.*, 2000, **626**, 825; (*b*) H. W. Roesky, K. Swerat and F. Edelmann, *Z. Naturforsch., Teil B*, 1988, **43**, 231; (*c*) K. V. Katti, U. Seseke and H. W. Roesky, *Inorg. Chem.*, 1987, **26**, 814; (*d*) K. V. Katti, H. W. Roesky and M. Rietzel, *Z. Anorg. Allg. Chem.*, 1987, **553**, 123.
- 7 Reviews: (*a*) K. Dehnicke, M. Krieger and W. Massa, *Coord. Chem. Rev.*, 1999, **182**, 19; (*b*) K. Dehnicke and J. Strähle, *Polyhedron*, 1989, **8**, 707.
- 8 T. Rübenstahl, F. Weller, S. Wocaldo, W. Massa and K. Dehnicke, *Z. Anorg. Allg. Chem.*, 1995, **621**, 953.
- 9 M. J. Sarsfield, M. Thornton-Pett and M. Bochmann, *J. Chem. Soc., Dalton Trans.*, 1999, 3329.
- 10 G. Aharonian, K. Feghali, S. Gambarotta and G. P. A. Yap, *Organometallics*, 2001, **20**, 2616.
- 11 M. Sotoodeh, I. Leichtweis, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, *Chem. Ber.*, 1993, **126**, 913.
- 12 R. P. Kamalesh Babu, R. McDonald and R. G. Cavell, *J. Chem. Soc., Dalton Trans.*, 2001, 2210.
- 13 M. J. Sarsfield, M. Said, M. Thornton-Pett, L. A. Gerrard and M. Bochmann, *J. Chem. Soc., Dalton Trans.*, 2001, 822.
- 14 N. Carr, B. J. Dunne, L. Mole, A. G. Orpen and J. L. Spencer, *J. Chem. Soc., Dalton Trans.*, 1991, 863.
- 15 Ref. 3 erroneously gives a value of $167.8(3)^\circ$ for this compound. The correct angles may be found in the deposited CIF.
- 16 U. Siemeling, A. Stammler, H.-G. Stammler and O. Kuhnert, *Z. Anorg. Allg. Chem.*, 1999, **625**, 845.
- 17 G. M. Sheldrick, SHELX 97, University of Göttingen, Germany, 1997.